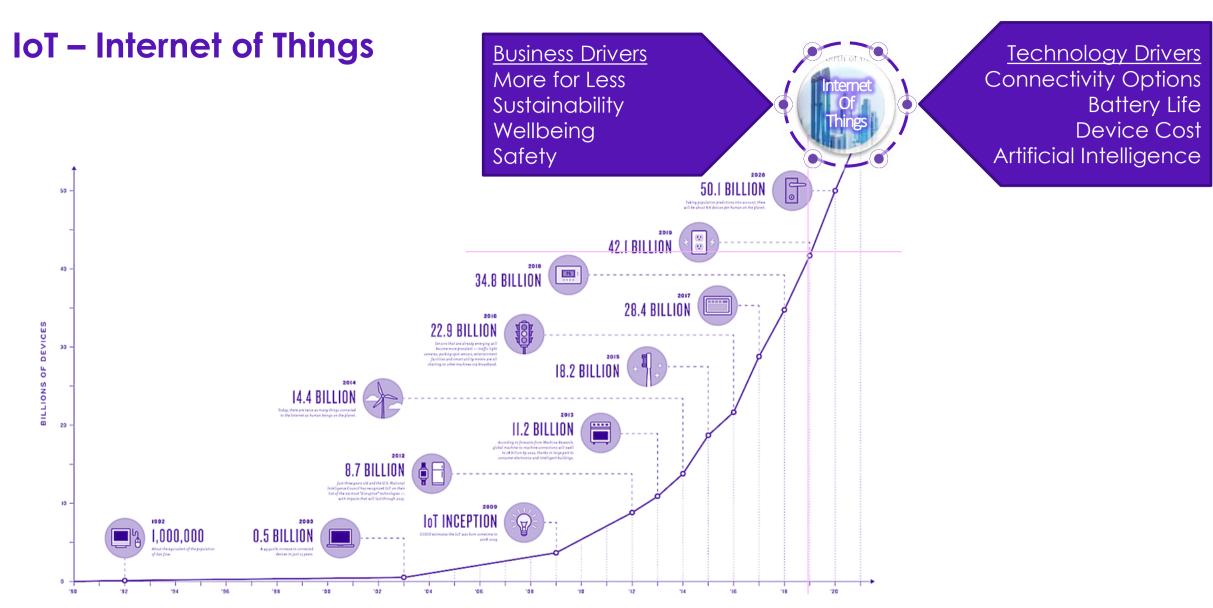


IoT Research for South East LEP

Simon Beddus, Applied Research

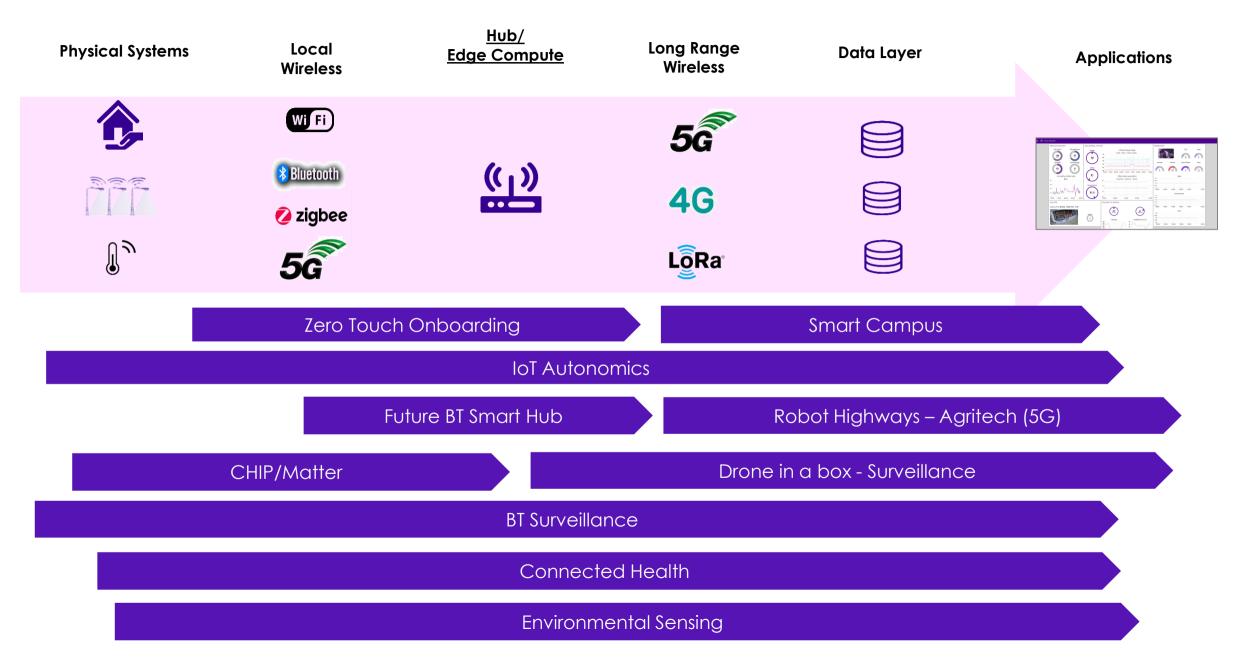
Today's Agenda

- Purposeful Innovation
- What we research and why
- Typical Use Cases


19/07/2021 17:24

- Deeper Dive
 - Autonomics making things secure and scalable
 - Cyberphysical Research UAVs and Robot Highways

Unmanned Vehicle Activities


The Internet of Things (IoT) refers to the ever-growing network of physical objects that are connected to the internet and the communication that occurs between these objects and other Internet-enabled devices and systems

IoT Technology

Ph	nysical Systems	Local Wireless	<u>Edg</u>	<u>Hub/</u> e Compute	Long Range Wireless	Data exc and digi Data Layer	
	^	Wi Fi			5 G		
		😵 Bluetooth 💋 zigbee		(())	4 G		
		5 G	Security, Lo Privacy, Date	eroperability, cal IoT apps, a storage and	LoRa		
			Ana	llytics			
Wireless Technology	y	Data Rate	Range	Power Usage	Cost	Typical Applications	
2G/3G		1-10 Mbps	Several Miles	High	High	Single legacy sensors – N	Wide area
4G		40Mbps	Several Miles	Medium	High	Single sensors, local hub	os – Wide area
5G MMTC		160bps+	Several Miles	Low	Low	Utilities, retail, buildings - deployments – 300k sen	
NB-IoT		0.1-1Mbps	Several Miles	Medium	Medium	Utilities, retail, buildings -	- Wide area
Bluetooth		1,2,3 Mbps	~100 Feet	Low	Low	Simple sensors – temper and retail - Local area	ature, CO2 in buildings, health
LoRa		<50 kbps	1-3 miles	Low	Medium	Utilities, retail, buildings -	- Wide area
WiFi		0.1-54 Mbps	<300 Feet	Medium	Low	Complex sensors and sy retail – Wide area	stems. in buildings, health and

IoT Use Cases and Projects

A Smarter Suffolk – project overview

Suffolk County Council (SCC) secured funding for the 'A Smarter Suffolk' project (ADEPT - Association of Directors of Environment, Economy, Planning and Transport).

18-month project (Dec 2019 to May 2021)

Utilise SCC's existing assets, e.g. street lighting columns, to deploy adaptive street lighting and sensor technology in support of local services.

Analysis of data will reveal insights that will help Suffolk County Council run local services more efficiently (cost savings)

- more efficient use/control of street lighting
- targeted gully clearing
- smarter (more informed) road gritting
- directed waste bin collection and grit bin monitoring/re-filling

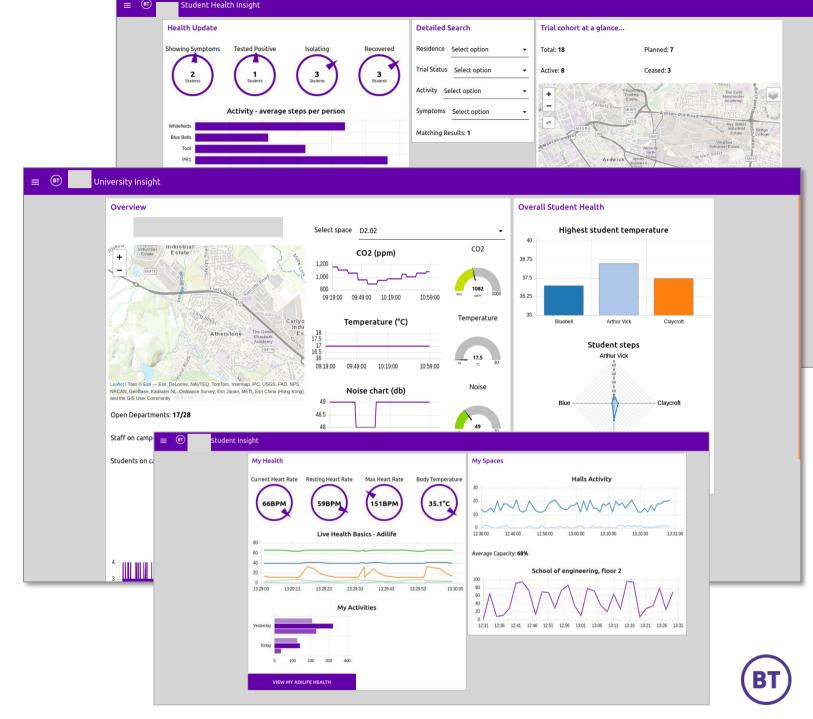
Key partners: Suffolk County Council, Suffolk Highways, University of Suffolk, BT

Evaluate and compare sensors/sensor technology in a representative environment (Adastral Park) prior to wider acquisition and deployment.

BT are providing a data hub - uplifted Information Exchange (BT Enterprise)

- collate/integrate sensor and lighting data from multiple suppliers
- expose sensor/lighting data via a common API

Adastral Park is being used as test/evaluation environment.



Smart Campus

- Live project with university innovation alliance
- Health and wellbeing of students
 and staff
- Use Cases
 - Holistic Well Being
 - Smart Place Optimisation
 - Trusted IoT
- Engagement with users
- Ethics study
- IoT data exchange and analytics
- Using commercial home and health IoT systems

The Deeper Dive...

Legacy System

Problem

Increased complexity in IoT ecosystems due to the need for multiple sensors, networks, security functions, systems spanning from edge to cloud and various vendors.

Introduces:

Systems Complexity

Difficult to Manage/Monitor

New Attack Surfaces

Challenging to Scale

Autonomics Platform

A set of platform capabilities which automate and self-regulate the delivery and management of trusted IoT services.

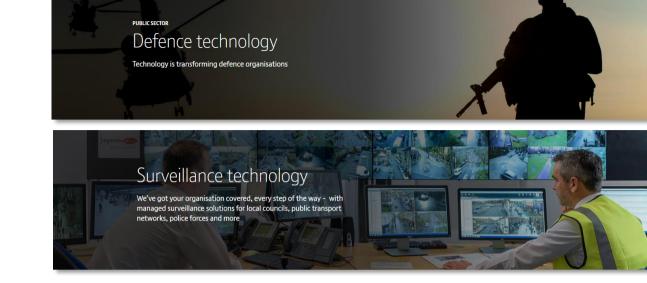
Self-configure

Self-heal

Self-protect

Self-optimise

Autonomics Architecture


Smart Cities	Ports & Logistics	Health Sma Hom		ndustry Utilities 4.0				
		IoT Analytics						
	Data Exchange	Value Added Services	UAV Systems	UGV Systems				
Privacy Security		36141663	Connected Cyber-Physical Platform					
Trust		IoT Autonomics						
	Existing IoT Platforms							
	Connectivity							
	Sensors & Devices							

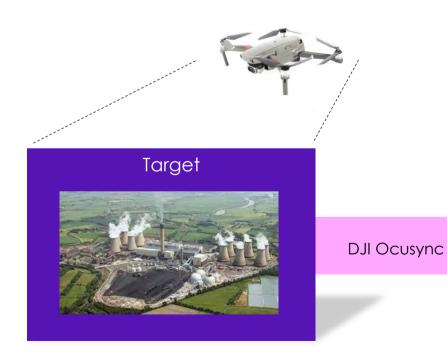
BT

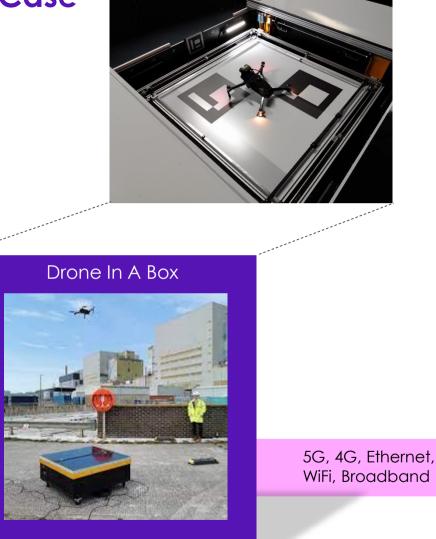
CyberPhysical (C2P) Research

A **cyber-physical** system (CPS) or intelligent system is a computer system in which a mechanism is controlled or monitored by computer-based algorithms.

- Why BT?
 - Increasing customer need
 - Own use, leading expertise
- C2P Challenges
 - Economics
 - Complexity
 - Safety
- Translates into...
 - Industry engagements Future Flight (CAA, Altitude Angel, M4 Corridor)
 - Safety driven approach to complex systems
 - Autonomics of flight and the risk management around it
 - Extensive test facility at Bentwaters Parks

openreach





Example UAV Surveillance Use Case

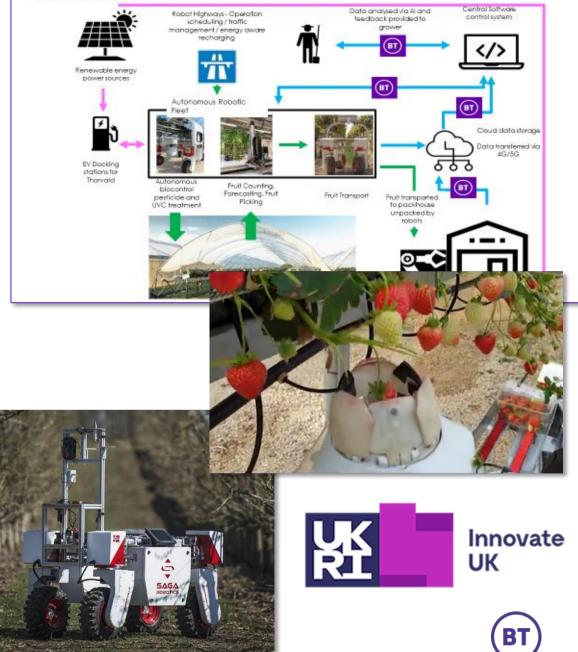
- Weatherproof enclosure Drone In A Box
- Evaluating autonomous flight operations
- Safety cases and oversight
- Impact on regulation

Command and Control Centre

Mission Control

Surveillance Platform

Custom Analytics and Control


Business Logic

Robot Highways Use Case

- 1. In partnership with University of Lincoln, Saga Robotics and Clockhouse Farm, Kent
- Research and understand the implications of cyber-physical systems on IoT architectures – 3 years
- 3. Evolve our edge computing research to include actuation and robotics
- Research and develop an edge/cloud architecture to guarantee scalability of the Industrial IoT (agritech) solutions ensuring the optimum balance is achieved between edge processing and cloud processing on 5G.

Robot Highways. An integrated approach

Further IoT Slides

Drone usage in BT

Use Cases	Examples	Benefits	
Cable Delivery	To span, rivers, valleys and over trees and unsafe structures	None ballistic safe solution. Engineers never in harms way. New cost effective routes opened up	
Delivery of Spares by Drone	Deliveries to remote locations where traditional methods are unavailable or too slow	Time and cost savings. This solution is able to operate when Ferries and Helicopters are not.	
Asset inspection	Pole testing Mast inspection Building inspection	Climbing cut to a minimum. Fast and cheap	
Aerial survey	Radio line of sight survey	Cost effective, saves climbing	
3D Modelling Photogrammetry	Modelling of assets, Al used to identify inventory	Taking asset management and planning to a new level	
5G Network Splicing	Using drones to build aerial networks.	Emergency response network coverage	

≡ 🖲 Smart Adastral

